DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles.
نویسندگان
چکیده
Asymmetric assembly of nanomaterials has attracted broad interests because of their unique anisotropic properties that are different from those based on the more widely reported symmetric assemblies. Despite the potential advantages, programmable fabrication of asymmetric structure in nanoscale remains a challenge. We report here a DNA-directed approach for the assembly of asymmetric nanoclusters using Janus nanoparticles as building blocks. DNA-functionalized spherical gold nanoparticles (AuNSs) can be selectively attached onto two different hemispheres of DNA-functionalized Janus nanoparticle (JNP) through DNA hybridization. Complementary and invasive DNA strands have been used to control the degree and reversibility of the assembly process through programmable base-pairing interactions, resulting in a series of modular and asymmetric nanostructures that allow systematic study of the size-dependent assembly process. We have also shown that the attachment of the AuNSs onto the gold surface of the Janus nanoparticle results in red shifting of the UV-vis and plasmon resonance spectra.
منابع مشابه
Stepwise surface encoding for high-throughput assembly of nanoclusters.
Self-assembly offers a promising method to organize functional nanoscale objects into two-dimensional (2D) and 3D superstructures for exploiting their collective effects. On the other hand, many unique phenomena emerge after arranging a few nanoscale objects into clusters, the so-called artificial molecules. The strategy of using biomolecular linkers between nanoparticles has proven especially ...
متن کاملTrehalose-based Janus cyclooligosaccharides: the "Click" synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles.
The convergent preparation of Janus molecular nanoparticles by thiourea-"clicking" of α,α'-trehalose halves has been implemented; the strategy allows access to macrocyclic derivatives with seggregated cationic and lipophilic domains that in the presence of DNA undergo pH-dependent self-assembly into lamellar superstructures, as established by electrochemical, structural (SAXS), microscopical (T...
متن کاملHierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds.
The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology. Short molecular linkers have previously been used to create assemblies of nanoparticles, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami can preci...
متن کاملHeterogeneous nanoclusters assembled by PNA-templated double-stranded DNA.
Heterogeneous nanoclusters with trimeric and core-shell architectures containing nanoparticles of different size and composition have been fabricated via site-specific PNA-"invasion" of DNA double helix. This novel strategy facilitates the incorporation of double-stranded DNA into the nanoparticle assembly design.
متن کاملJanus gold nanoparticles obtained via spontaneous binary polymer shell segregation† †Electronic supplementary information (ESI) available: Experimental procedures, results of SAXS, UV-vis and DLS for NPs of different core sizes, polymer coatings and in different solvents; details of emulsification using Janus Au NPs; TEM images after silica coating of Janus Au NPs; 3D images of different stained Au NPs. See DOI: 10.1039/c5cc10454h Click here for additional data file.
Janus gold nanoparticles are of high interest because they allow directed self-assembly and display plasmonic properties. We succeeded in coating gold nanoparticles with two different polymers that form a Janus shell. The spontaneous segregation of two immiscible polymers at the surface of the nanoparticles was verified by NOESY NMR and most importantly by electron microscopy analysis in two an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2012